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1. Introduction

Ultra high performance concrete (UHPC) is a more advanced develop-
ment of traditional fiber reinforced concrete (FRP). Unlike glass fiber
concrete (GFRC) which 1s concerned with bending strength to manufac-
ture decorative products, UHPC is concerned with the compressive per-
formance of the material. In the early 1970s experts predicted that the
practical limit of ready-mix concrete would certainly not exceed the load
capacity of 11,000 psi. However, up to now, there have been many projects
using concrete with compressive strength up to 20,000 psi.

Concrete-filled steel tubular (CFST) structure has numerous structural
benefits and has been widely used in civil engineering structures. Overall,
CFEST columns exploit various advantages of steel and concrete materials by
combining them together (Cho1 & Xiao, 2010). Therefore, CEST columns
offer some inherent good properties, such as high load-carrying capacity,
high seismic resistance, aesthetic appearance, reduced cross-section, high
resistance under fire and explosion, and work faster (Chen et al., 2010;
Morino & Tsuda, 2003). Furthermore, core concrete slows down local
warping of steel pipes thus eliminates the need for concrete cast rein-
torcement thus resulting in rapid construction (Hu et al., 2011).

CFST columns have many different types of cross-sections, such as
circles, squares and rectangles, ellipses, and polygons. Particularly for the
circular section CFST column, much research has been done on its
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structure and method of determining its behavior as in the studies of
Schneider (Schneider, 1998), Shams et al. (Shams & Saadeghvaziri, 1997),
De Nardin va El Debs (Hassanein et al., 2018), va Viet-Linh Tran et al.
(Tran et al., 2020). CFST column is widely used because it can achieve
more load carrying capacity and provides higher yield rear axle ductility due
to significant restraining effect. Round section CFST columns have been
adopted by design standards such as AS/NZS 5100.6 (Hicks et al., 2017),
Eurocode 4 (Johnson, 2012), ANSI (Committee, 2010), GB 50956
(GB50936-2014, 2014). Besides, CFST columns with square and rectan-
gular cross-sections have not been studied much. With the current devel-
opment of science and technology, the method of structural simulation by
finite element-based software is quite popular and highly eftective. One of
them 1s ANSYS (finite element software). Many studies are showing that
ANSYS is used to study construction structures. ANSY'S is used to consider
the performance of reinforced concrete beams (Santhakumar et al., 2007),
of high-strength reinforced concrete columns (Kottb et al., 2015), of long
columns with stainless steel (Al Akawai et al., 2018). When using the
simulation method for structural cases with uncompressed 3-axis concrete,
it is necessary to use different criteria from the working of normal concrete
such as Cam-Clay, Drucker-Prager, Mohr-Coulomb, Menetrey-Willam,
.. in which the Druker-Prager criterion has been used a lot and with a
quite high accuracy (Kartal et al., 2012; Oztekin et al., 2016; Yu et al.,
2010). However, building an accurate Drucker-Prager model needs to
depend on many factors and is quite complicated (Alejano & Bobet, 2012).
To solve the above-mentioned difficult problems, this paper presents
how to determine the critical load of the CEST column with square cross-
section by ANSYS finite element software. This method saves the cost of
the experiment as well as details the effects of specific parameters in the
Drucker-Prager model in the CFST column.

2. Method

Initially, the method was conducted based on previous research results on
the parameters of super high strength steel and concrete materials. Then
consider the effect of the parameters on the simulation method by finite
element software ANSYS WORKBENCH and select the appropriate
stress-strain relationship for the analytical model. The selected texture for
analysis is the experimental sample S1 in the experimental study ot Ming-
Xiang Xiong (Xiong et al., 2017).
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2.1 Stress-strain relationship for steel materials

The stress-strain relationship of steel 1s shown in Fig. 11.1 (Hassanein et al.,
2018) where: &, is the plastic deformation of the steel corresponding to the
stress f,,, € 1s the maximum strain in the yielding phase (taken as 0.005). g, va
tu are the relative strain and maximum stress, respectively. The stress-strain
relationship of steel is established by Multilinear Isotropic Hardening.
Poisson’s coefficient is taken as 0.3, yield strength is taken as 90% ot its value.

2.2 Drucker-Prager model specifications for UHPC

In the case of concrete packed into a steel box, it is quite affected by the
triaxial compressive properties, so the Drucker-Prager (DP) model for
concrete is suitable according to previous studies (Fam & Rizkalla, 2001;
Hu et al., 2003; Liang, 2009; Tran et al., 2020). To use the DP model, it is
necessary to define many parameters (Alejano & Bobet, 2012). For this
study, the simulation method also uses the Drucker-Prager model for
UHPC but considers the influence of the parameters difterently from
previous studies (Fig. 11.2). The poisson coetticient of UHPC material is
taken as 0.25 (Liew & Xiong, 2012; Tran et al., 2020). The initial elastic
modulus was obtained according to the data from the experiment (Xiong
et al., 2017). For cases where the elastic modulus is not available, the
tollowing formulas can be obtained:

In this study, the main values for using the DP model are the strength of
uniaxial, biaxial compressive material, the strength of uniaxial tensile mate-
rials, the yield phase, the softening phase of the material (Oystein Grostad,

2018). wuniaxial tensile strength 1is taken as: f; = 0.65-/\/]‘_2. Biaxial

> £
0 09,e, & £y

Strain
Figure 11.1 Stress-strain relationship of steel shell.
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Figure 11.2 Drucker-Prager model parameters for UHPC.

compressive strength is taken as: £ = (1.1 +1.45)-f" (Lee et al., 2017).
Dilatancy coefficients are taken from O to 1, the coefficients of the softening
and damage phase have been proposed with certain ranges of values Fig. 11.3.

2.2.1 Effect of tensile strength
The value of tensile strength is taken around the value 0.65-4/f to

c
consider its influence on the ultimate load when simulating with the DP
model. The relationship between the tensile strength and the ultimate load
is shown in Fig. 11.4. From the results, it can be seen that the tensile
strength does not have much influence on the ultimate load. The

maximum change critical load value is 0.00045%.
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Figure 11.3 Relationship of critical load and biaxial compressive strength.
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Figure 11.4 The relationship of load with tensile strength.

2.2.2 Effect of elastic modulus

Elastic modulus is considered with values in Table 11.1, the relationship of
critical load and elastic modulus is shown in Fig. 11.5. The value ot the
critical load changes without any rule, but the change of the ultimate load
when the elastic modulus changes 1s not significant, 0.08% maximum.

2.2.3 Effect of coefficient of friction

The values of the coefficient of friction between the UHPC core and the
steel shell are considered with 0.1, 0.15, 0.2, and 0.25, respectively. The
value 0.3 and the obtained results are shown in Fig. 11.6. When the co-
efticient of friction between UHPC and the steel plate changes, the critical
load does not aftect much, the largest difterence is 0.083%.
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Table 11.1 Elastic modulus cases.

The formula for determining the elastic According to the document
modulus

E. =5700-+/f Mander et al. (1988)
E. = 4700-\/F ACI 318-11 (2011)
E, = 4730- \/f_i Popovics (1973)

E, = 5573- \/f_i Wu & Wang (2009)
E. = 3320-+/f + 6900 (Mpa) Liang (2009)

Where E,, f, are the elastic modulus, uniaxial compressive strength of UHPC, respectively.
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Figure 11.5 The relationship of critical load with elastic modulus.
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Figure 11.6 Relationship of critical load with the coefficient of friction.



Predict the critical load of rectangular 179

6355100
6355080

6355060

6355000
6354980

6354960
0.15 0.2 0.25 0.3 0.35 0.4 0.45

Relative stress strart at nonlear hardening

Figure 11.7 The relationship of critical load with relative stress starts at nonlinear
hardening.

2.2.4 Effect of stress value at the starting position of hardening
When the value of stress at the starting position hardening occurs with
values equal to 20%, 25%, 30%, 35% of the 1-axis compressive strength of
UHPC, we have the result of the relationship between the critical load
with the starting stress of hardening on Fig. 11.7. The resulting critical
load is not affected much for this case, the maximum difference is
0.00176%. Proceeding similarly with the remaining parameters, the study
obtained the results that the critical loads are almost unchanged when they
change.

3. Result of critical load of CFST column with a
square cross-section

From the above results, to determine the critical load of a rectangular steel
column filled with high-strength concrete with ANSYS WORKBENCH,
it 1s necessary to pay attention to the value of 2-axis compressive strength,
and other values may be chosen at random 1n its condition to determine the
critical load.

Fig. 11.8 shows that the deformation shape of the CEST column is quite
similar between the simulation method by ANSYS and the experimental
results (Xiong et al., 2017). The load-displacement relationship of the
CEST column is shown in Fig. 11.9. Compared with the experimental
results of Xiong (Xiong et al., 2017), the results of the load-displacement
relationship are quite similar.
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Figure 11.8 Deformation of simulation and experimental methods.
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Figure 11.9 The load-displacement relationship of the CFST column.

4, Compare results

Table 11.2 shows the results of the CEST column simulation method using
ANSYS Workbench, the experimental results, as well as the results from
the calculation method from the current standards. Table 11.3 shows the
error of CEST column critical load with other methods.

Table 11.2 CFST column critical load value of rectangular cross-section.

Nansvs Nrest Neca Naisc Nacias Nau Nasc
(KN) (KN (KN) (KN) (KN) (KN) (KN)

6334.1 6536 6428 6441 6441 6831 6435
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5. Conclusions

The method of determining the CFST column critical load by ANSYS
WORKBENCH with the Drucker-Prager model gives quite accurate re-
sults and is easy to use. Among the parameters of the Drucker-Prager
model, the durability parameter of ultra high performance concrete ma-
terials under biaxial compression greatly aftects the results of the analysis,
while other parameters have little influence on the critical load value.

Thus, the CFEST column structure, when simulated by ANSYS
WORKBENCH, only needs to pay attention to the value of biaxial
compressive strength and the Drucker-Prager model is enough to analyze
and find the critical load of the structure.
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